loT Verde
Monitoramento de Consumo de Energia

Alexandre B. Gongalves, Daniel B. Alves, Felipe L. Moreira, Renan L. Adolfo, Rodrigo C. Z. Junior,
Vinicius D. Kamada

Introducao

A aplicagao de hardware de prototipagem de codigo aberto e sistemas embarcados
oferece uma solugéo eficaz para a sustentabilidade energética em casa. Ao criar um
sistema de 10T, é possivel medir o consumo de eletricidade em tempo real por meio
de sensores nao invasivos.

O Protétipo

O protdtipo desenvolvido consiste em um sistema simples de monitoramento,
utilizando “Arduino Uno R3” este é capaz de identificar o tempo que atividade de
um aparelho eletrodoméstico ligado a rede elétrica, consumindo-a sem
necessidade.

A fim de demonstrar sua aplicacdo em testes na plataforma “Tinkercad”, foi
utilizado um botao simples que quando clicado continuamente, simula um aparelho
em constante contato com a rede elétrica, apds cinco segundos (tempo nao realista
utilizado apenas para testes) o display LCD mostra uma mensagem de alerta ao
usuario.

(Imagem do protétipo completo)



Guia de Montagem

Para a reconstrugao desse prototipo fisicamente e virtualmente (neste caso usar a
plataforma Tinkercad) serdo necessarios os seguintes materiais:

- Arduino (Uno R3)
Placa de microcontrolador baseada no chip ATmega328P. E plataforma de
prototipagem eletrénica de cédigo aberto, facilitando a criagdo de projetos de
eletrénica interativa e automacéo;

- Botao (microswitch tatil de 4 pinos)
Um botéo tatil que sé aciona a conexdo enquanto esta pressionado, voltando
ao estado normal quando solto;

- Placa de Ensaio
Permite a montagem de prototipos de circuitos eletrénicos de forma rapida,
temporaria e reutilizavel, possuindo uma grade organizada de furos que sao
eletricamente conectados em grupos especificos, permitindo que sejam
interligados diversos componentes;

- Potenciometro (capacidade de 10KQ)
Resistor variavel com trés terminais. Sua principal fungao no projeto é regular
a intensidade luminosa do display;

- Resistor (capacidade de 10KQ)
Limita e controla o fluxo de corrente elétrica.

- Display LCD 16x2 (12C)
Fornece uma interface visual simples para o usuario, permitindo que o
Arduino exiba informacobes;

- Fios Jumper (Macho-Macho)
Fazem as conexdes, ideais para prototipagem e projetos de Arduino, pois séo
faceis de plugar e desplugar no protoboard(placa de ensaio) e nos pinos do
Arduino;



Conexoes Basicas de Hardware

O circuito a seguir detalha a conexao fisica entre o microcontrolador Arduino e um
Display LCD 16x2, essencial para o sistema de alerta de desperdicio de energia.

A correta distribuicdo de energia, terra, e a ligagao dos pinos de controle e dados
sao fundamentais para que o Arduino possa enviar informagdes de texto para a tela.

Fios Pretos - terra (negativo)
Fios Vermelhos - 5v (positivo)
Fio Verde - VO conectado ao potencidmetro para controle da luminosidade da tela

- porta RS da tela LCD conectada a porta D12 do Arduino

- porta E da tela LCD conectada a porta D11 do Arduino

Fio Rosa - porta DB4 da tela LCD conectada a porta D5 do Arduino
Fio Turquesa - porta DB5 da tela LCD conectada a porta D4 do Arduino
Fio Azul - porta DB6 da tela LCD conectada a porta D3 do Arduino
Fio Roxo - porta DB7 da tela LCD conectada a porta D2 do Arduino
Resistor - Conecta o pino positivo do LED a entrada de energia
Potenciometro - gere a entrada de energia no display
Porta do Arduino 5V - distribui energia para o restante

Porta GND do Arduino - Terra



O Caédigo

Para a criagao do cédigo, segue os componentes que estdo sendo usados e as
constantes para a légica de tempo.

#include <LiquidCrystal.h>
Inclui a biblioteca necessaria para controlar o display LCD.

LiquidCrystal 1lcd(12, 11, 5, 4, 3, 2);

Instancia o objeto LCD, indicando ao Arduino quais pinos digitais estao
conectados as entradas de controle e dados do display (RS, E, D4, D5, D6,
D7, respectivamente).

const int pinoBotao = AO;
Define que o botao esta conectado ao pino analégico 0 (A0).

const int pinoLED = A1;
Define que o LED de alerta esta conectado ao pino analdgico 1 (A1).

const unsigned long TEMPO_LIMITE_MS = 5000;
Define o limite de tempo para o alerta como 5000 milissegundos (5
segundos).

unsigned long tempolInicioPressionado = 0;
Variavel que armazenara o valor de millis() (o tempo de execugdo do
Arduino) no momento em que o botéo é pressionado.

bool botaoEstavaPressionado = false;

Uma flag (bandeira booleana) que rastreia o estado anterior do botao. Isso é
crucial para detectar a mudancga de estado (solto para pressionado ou
vice-versa) e registrar o tempo corretamente.



Setup()

Esta funcao é executada apenas uma vez quando o Arduino € ligado ou reiniciado.

1. Inicializagao do LCD:
o lcd.begin(16, 2);: Inicializa o display LCD com 16 colunas e 2
linhas.

o lcd.print("Desperdicio Energia") ;: Exibe uma mensagem
inicial na primeira linha.

2. Configuracao do Botéao:
o pinMode(pinoBotao, INPUT_PULLUP) ;: Configura o pino do
botdo como entrada e ativa o resistor de pull-up interno. Isso
significa que:

m O estado solto é lido como HIGH (Alto).
m O estado pressionado (conectando ao GND/terra) é lido como

LOW (Baixo).

3. Configuragao do LED:
o pinMode(pinoLED, OUTPUT) ;: Configura o pino do LED como
saida.

o digitalWrite(pinoLED, LOW) ;: Garante que o LED comece
desligado.

Loop()

Esta funcéo é executada continuamente e contém a logica central do programa.

1. Leitura do Botao

e int estadoBotao = digitalRead(pinoBotao) ;:Lé o estado atual do
pino do botado (sera LOW se pressionado e HIGH se solto).



2. Se o Botéo Estiver Pressionado (estadoBotao == LOW)

Esta sec¢éao lida com a contagem de tempo enquanto o botédo esta pressionado.

e Detecgao de Inicio de Pressionamento:
o if (botaoEstavaPressionado == false): Verifica se o botdo
acabou de ser pressionado (mudou de HIGH para LOW).

m tempoInicioPressionado = millis() ;: Registra o tempo
atual (em milissegundos) como o ponto de partida da contagem.

m botaoEstavaPressionado = true;: Atualiza a flag para
indicar que o botao esta agora pressionado.

m lcd.setCursor(@, 1); lcd.print
("Pressionando... ") ;: Exibe a mensagem de estado na
segunda linha do LCD.

e Contagem de Tempo e Alerta:
o unsigned long tempoDecorrido = millis() -
tempoInicioPressionado ;: Calcula quanto tempo passou desde
que o botéao foi pressionado.

o if (tempoDecorrido >= TEMPO_LIMITE_MS): Verifica se o
tempo limite de 5 segundos foi atingido.

m lcd.clear();:LimpaoLCD.

m lcd.print("!!! ALERTA !'!!"); lcd.setCursor(0,
1); lcd.print("DESPERDICIO ENERG.") ;: Exibe a
mensagem de alerta.

m digitalWrite(pinoLED, HIGH) ;: Acende o LED para
indicar o alerta de desperdicio.



3. Se o Botao Estiver Solto (else - estadoBotao == HIGH)
Esta secédo lida com o reset e 0 estado de espera.

e Deteccao de Fim de Pressionamento (Reset):
o if (botaoEstavaPressionado == true): Verifica se o botdo
acabou de ser solto (mudou de LOW para HIGH).

m Reset de Estado: botaoEstavaPressionado = false: e

tempolInicioPressionado = 0; resetam as variaveis de
contagem de tempo e estado.

m digitalWrite(pinoLED, LOW) ;: Desliga o LED
(cancelando qualquer alerta ativo).

m lcd.clear(); lcd.print("Analise em andamento");:
Exibe uma mensagem de transigédo ou de "limpeza".

e Estado de Espera:
o lcd.setCursor(@, 1); lcd.print("Aguardando Botao");:
Exibe a mensagem de espera na segunda linha.

4. Estabilidade

e delay(50) ;: Um pequeno atraso de 50 milissegundos é adicionado para
estabilizar as leituras do bot&o e evitar o ruido (conhecido como debounce).



Cédigo Completo

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int pinoBotao = A0;

const int pinoLED = A1;

const unsigned long TEMPO_LIMITE_MS = 5000;
unsigned long tempolnicioPressionado = 0;

bool botaoEstavaPressionado = false;

void setup() {
Icd.begin(16, 2);

Icd.print("Desperdicio Energia");

pinMode(pinoBotao, INPUT_PULLUP);

pinMode(pinoLED, OUTPUT);

digitalWrite(pinoLED, LOW);




void loop() {
int estadoBotao = digitalRead(pinoBotao);
if (estadoBotao == LOW) {
if (botaoEstavaPressionado == false) {
tempolnicioPressionado = millis();
botaoEstavaPressionado = true;
Icd.setCursor(0, 1);

Icd.print("Pressionando... ");

unsigned long tempoDecorrido = millis() - tempolnicioPressionado;

if (tempoDecorrido >= TEMPO_LIMITE_MS) {

Icd.clear();

Icd.print("!!! ALERTA !I!");
Icd.setCursor(0, 1);
Icd.print("DESPERDICIO ENERG.");

digitalWrite(pinoLED, HIGH);




} else {

if (botaoEstavaPressionado == true) {

Icd.clear();
Icd.print("Analise em andamento");
Icd.setCursor(0, 1);
botaoEstavaPressionado = false;
tempolnicioPressionado = 0;
digitalWrite(pinoLED, LOW);

}

Icd.setCursor(0, 1);

Icd.print("Aguardando Botao");

}

delay(50);

Resumo:

O cadigo usa a diferenga entre o tempo atual (millis()) e o tempo de inicio do
pressionamento (tempoInicioPressionado) para medir a duragéo. A variavel
botaoEstavaPressionado garante que a contagem de tempo sé comece uma

vez quando o botao é pressionado pela primeira vez, e que o reset e o desligamento
s6 ocorram uma vez quando ele é solto.

10



Funcionamento

.0

Etapa 1:
Aguardando o
clique de botao;

Etapa 2:
Pressionamento
Continuo em
andamento;

11



Conclusao

Etapa 3:

Apods o tempo
limite, o alerta é
emitido no
display,

O projeto atingiu seu objetivo principal ao implementar um sistema eficaz de alerta
de desperdicio de energia utilizando o Arduino. A logica central mede a duragéo do
pressionamento de um botdo para simular um uso prolongado e, potencialmente,

desnecessario de um recurso.

12



	1. Leitura do Botão 
	2. Se o Botão Estiver Pressionado (estadoBotao == LOW)​ 
	3. Se o Botão Estiver Solto (else - estadoBotao == HIGH) 
	4. Estabilidade 

