
IoT Verde
Monitoramento de Consumo de Energia

Alexandre B. Gonçalves, Daniel B. Alves, Felipe L. Moreira, Renan L. Adolfo, Rodrigo C. Z. Junior,
Vinícius D. Kamada

​
Introdução

A aplicação de hardware de prototipagem de código aberto e sistemas embarcados
oferece uma solução eficaz para a sustentabilidade energética em casa. Ao criar um
sistema de IoT, é possível medir o consumo de eletricidade em tempo real por meio
de sensores não invasivos.

O Protótipo

O protótipo desenvolvido consiste em um sistema simples de monitoramento,
utilizando “Arduino Uno R3” este é capaz de identificar o tempo que atividade de
um aparelho eletrodoméstico ligado à rede elétrica, consumindo-a sem
necessidade.
A fim de demonstrar sua aplicação em testes na plataforma “Tinkercad”, foi
utilizado um botão simples que quando clicado continuamente, simula um aparelho
em constante contato com a rede elétrica, após cinco segundos (tempo não realista
utilizado apenas para testes) o display LCD mostra uma mensagem de alerta ao
usuário.

 (Imagem do protótipo completo)

1

Guia de Montagem

Para a reconstrução desse protótipo fisicamente e virtualmente (neste caso usar a
plataforma Tinkercad) serão necessários os seguintes materiais:

-​ Arduino (Uno R3)
Placa de microcontrolador baseada no chip ATmega328P. É plataforma de
prototipagem eletrônica de código aberto, facilitando a criação de projetos de
eletrônica interativa e automação;

-​ Botão (microswitch tátil de 4 pinos)
Um botão tátil que só aciona a conexão enquanto está pressionado, voltando
ao estado normal quando solto;

-​ Placa de Ensaio

Permite a montagem de protótipos de circuitos eletrônicos de forma rápida,
temporária e reutilizável, possuindo uma grade organizada de furos que são
eletricamente conectados em grupos específicos, permitindo que sejam
interligados diversos componentes;

-​ Potenciômetro (capacidade de 10KΩ)

Resistor variável com três terminais. Sua principal função no projeto é regular
a intensidade luminosa do display;

-​ Resistor (capacidade de 10KΩ)

Limita e controla o fluxo de corrente elétrica.

-​ Display LCD 16x2 (I2C)
Fornece uma interface visual simples para o usuário, permitindo que o
Arduino exiba informações;

-​ Fios Jumper (Macho-Macho)
Fazem as conexões, ideais para prototipagem e projetos de Arduino, pois são
fáceis de plugar e desplugar no protoboard(placa de ensaio) e nos pinos do
Arduino;

2

Conexões Básicas de Hardware​
​
O circuito a seguir detalha a conexão física entre o microcontrolador Arduino e um
Display LCD 16x2, essencial para o sistema de alerta de desperdício de energia. ​
A correta distribuição de energia, terra, e a ligação dos pinos de controle e dados
são fundamentais para que o Arduino possa enviar informações de texto para a tela.​
​
Fios Pretos - terra (negativo)​

Fios Vermelhos - 5v (positivo)​

Fio Verde - V0 conectado ao potenciômetro para controle da luminosidade da tela​

Fio Laranja - porta RS da tela LCD conectada a porta D12 do Arduino ​

Fio Amarelo - porta E da tela LCD conectada a porta D11 do Arduino ​

Fio Rosa - porta DB4 da tela LCD conectada a porta D5 do Arduino ​

Fio Turquesa - porta DB5 da tela LCD conectada a porta D4 do Arduino ​

Fio Azul - porta DB6 da tela LCD conectada a porta D3 do Arduino ​

Fio Roxo - porta DB7 da tela LCD conectada a porta D2 do Arduino ​

Resistor - Conecta o pino positivo do LED a entrada de energia​

Potenciômetro - gere a entrada de energia no display​

Porta do Arduino 5V - distribui energia para o restante​

Porta GND do Arduino - Terra​
​
​
​
​
​
​
​
​
​

3

O Código

Para a criação do código, segue os componentes que estão sendo usados e as
constantes para a lógica de tempo.

-​ #include <LiquidCrystal.h>​
Inclui a biblioteca necessária para controlar o display LCD.​

-​ LiquidCrystal lcd(12, 11, 5, 4, 3, 2);​
Instancia o objeto LCD, indicando ao Arduino quais pinos digitais estão
conectados às entradas de controle e dados do display (RS, E, D4, D5, D6,
D7, respectivamente).​

-​ const int pinoBotao = A0;​
Define que o botão está conectado ao pino analógico 0 (A0).​

-​ const int pinoLED = A1;​
Define que o LED de alerta está conectado ao pino analógico 1 (A1).​

-​ const unsigned long TEMPO_LIMITE_MS = 5000;​
Define o limite de tempo para o alerta como 5000 milissegundos (5
segundos).​

-​ unsigned long tempoInicioPressionado = 0;​
Variável que armazenará o valor de millis() (o tempo de execução do
Arduino) no momento em que o botão é pressionado.​

-​ bool botaoEstavaPressionado = false;​
Uma flag (bandeira booleana) que rastreia o estado anterior do botão. Isso é
crucial para detectar a mudança de estado (solto para pressionado ou
vice-versa) e registrar o tempo corretamente.

​
​
​
​

4

Setup()

Esta função é executada apenas uma vez quando o Arduino é ligado ou reiniciado.​

1.​ Inicialização do LCD:
○​ lcd.begin(16, 2);: Inicializa o display LCD com 16 colunas e 2

linhas.​

○​ lcd.print("Desperdicio Energia");: Exibe uma mensagem
inicial na primeira linha.​
​

2.​ Configuração do Botão:
○​ pinMode(pinoBotao, INPUT_PULLUP);: Configura o pino do

botão como entrada e ativa o resistor de pull-up interno. Isso
significa que:​

■​ O estado solto é lido como HIGH (Alto).​

■​ O estado pressionado (conectando ao GND/terra) é lido como
LOW (Baixo).​
​

3.​ Configuração do LED:
○​ pinMode(pinoLED, OUTPUT);: Configura o pino do LED como

saída.​

○​ digitalWrite(pinoLED, LOW);: Garante que o LED comece
desligado.

Loop()​
​
Esta função é executada continuamente e contém a lógica central do programa.

1. Leitura do Botão

●​ int estadoBotao = digitalRead(pinoBotao);: Lê o estado atual do
pino do botão (será LOW se pressionado e HIGH se solto).

5

2. Se o Botão Estiver Pressionado (estadoBotao == LOW)​

Esta seção lida com a contagem de tempo enquanto o botão está pressionado.

●​ Detecção de Início de Pressionamento:
○​ if (botaoEstavaPressionado == false): Verifica se o botão

acabou de ser pressionado (mudou de HIGH para LOW).​

■​ tempoInicioPressionado = millis();: Registra o tempo
atual (em milissegundos) como o ponto de partida da contagem.​

■​ botaoEstavaPressionado = true;: Atualiza a flag para
indicar que o botão está agora pressionado.​

■​ lcd.setCursor(0, 1); lcd.print​
("Pressionando... ");: Exibe a mensagem de estado na
segunda linha do LCD.​
​

●​ Contagem de Tempo e Alerta:
○​ unsigned long tempoDecorrido = millis() -

tempoInicioPressionado;: Calcula quanto tempo passou desde
que o botão foi pressionado.​

○​ if (tempoDecorrido >= TEMPO_LIMITE_MS): Verifica se o
tempo limite de 5 segundos foi atingido.​

■​ lcd.clear();: Limpa o LCD.​

■​ lcd.print("!!! ALERTA !!!"); lcd.setCursor(0,
1); lcd.print("DESPERDICIO ENERG.");: Exibe a
mensagem de alerta.​

■​ digitalWrite(pinoLED, HIGH);: Acende o LED para
indicar o alerta de desperdício.

6

3. Se o Botão Estiver Solto (else - estadoBotao == HIGH)

Esta seção lida com o reset e o estado de espera.

●​ Detecção de Fim de Pressionamento (Reset):
○​ if (botaoEstavaPressionado == true): Verifica se o botão

acabou de ser solto (mudou de LOW para HIGH).​

■​ Reset de Estado: botaoEstavaPressionado = false; e
tempoInicioPressionado = 0; resetam as variáveis de
contagem de tempo e estado.​

■​ digitalWrite(pinoLED, LOW);: Desliga o LED
(cancelando qualquer alerta ativo).​

■​ lcd.clear(); lcd.print("Analise em andamento");:
Exibe uma mensagem de transição ou de "limpeza".​

●​ Estado de Espera:
○​ lcd.setCursor(0, 1); lcd.print("Aguardando Botao");:

Exibe a mensagem de espera na segunda linha.​

4. Estabilidade

●​ delay(50);: Um pequeno atraso de 50 milissegundos é adicionado para
estabilizar as leituras do botão e evitar o ruído (conhecido como debounce).​
​
​

7

Código Completo

​
​
#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int pinoBotao = A0;

const int pinoLED = A1;

const unsigned long TEMPO_LIMITE_MS = 5000;

unsigned long tempoInicioPressionado = 0;

bool botaoEstavaPressionado = false;

void setup() {

 lcd.begin(16, 2);

 lcd.print("Desperdicio Energia");

 pinMode(pinoBotao, INPUT_PULLUP);

 pinMode(pinoLED, OUTPUT);

 digitalWrite(pinoLED, LOW);

}

8

void loop() {

 int estadoBotao = digitalRead(pinoBotao);

 if (estadoBotao == LOW) {

 if (botaoEstavaPressionado == false) {

 tempoInicioPressionado = millis();

 botaoEstavaPressionado = true;

 lcd.setCursor(0, 1);

 lcd.print("Pressionando... ");

 }

 unsigned long tempoDecorrido = millis() - tempoInicioPressionado;

 if (tempoDecorrido >= TEMPO_LIMITE_MS) {

 lcd.clear();

 lcd.print("!!! ALERTA !!!");

 lcd.setCursor(0, 1);

 lcd.print("DESPERDICIO ENERG.");

 digitalWrite(pinoLED, HIGH);

 }

9

} else {

 if (botaoEstavaPressionado == true) {

 lcd.clear();

 lcd.print("Analise em andamento");

 lcd.setCursor(0, 1);

 botaoEstavaPressionado = false;

 tempoInicioPressionado = 0;

 digitalWrite(pinoLED, LOW);

 }

 lcd.setCursor(0, 1);

 lcd.print("Aguardando Botao");

 }

 delay(50);

}

Resumo:
​
O código usa a diferença entre o tempo atual (millis()) e o tempo de início do
pressionamento (tempoInicioPressionado) para medir a duração. A variável
botaoEstavaPressionado garante que a contagem de tempo só comece uma
vez quando o botão é pressionado pela primeira vez, e que o reset e o desligamento
só ocorram uma vez quando ele é solto.

10

Funcionamento​
​
Etapa 1:
Aguardando o
clique de botão;​

​

Etapa 2: ​
Pressionamento
Contínuo em
andamento;

11

Etapa 3: ​
Após o tempo
limite, o alerta é
emitido no
display;

​
Conclusão​

O projeto atingiu seu objetivo principal ao implementar um sistema eficaz de alerta
de desperdício de energia utilizando o Arduino. A lógica central mede a duração do
pressionamento de um botão para simular um uso prolongado e, potencialmente,
desnecessário de um recurso.

12

	1. Leitura do Botão
	2. Se o Botão Estiver Pressionado (estadoBotao == LOW)​
	3. Se o Botão Estiver Solto (else - estadoBotao == HIGH)
	4. Estabilidade

